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ABSTRACT 

Efficient geothermal resource development remains challenging due to inherent geological uncertainty and limited subsurface data. A 

proof-of-concept for a digital twin for a fluvial geothermal reservoir, similar to the Delft campus geothermal project, is presented. This 

digital twin has the aim to integrate geological scenario modeling, production simulation, uncertainty analysis, and data assimilation to 

mitigate operational risks, reduce maintenance costs, extend reservoir longevity, and enhance the overall sustainability of this project. In 

this contribution, we assess the efficiency of the ensemble smoother with multiple data assimilation (ESMDA) for subsurface property 

inversion of a fluvial geothermal system. First, we developed an efficient method that allows for the swift creation of multiple geological 

scenarios of channelized reservoir geometries, fully constrained to well information, using Rapid Reservoir Modeling (RRM). Next, we 

generated an ensemble containing multiple geological realizations for a given scenario representing the geothermal system using stochastic 

reservoir modelling. For a single scenario and its ensemble of stochastically generated property distributions, heat flow and production 

rates were simulated using the Delft Advanced Research Terra Simulator (DARTS). One of the ensemble members and its simulated 

production data were taken as the “truth” (or reference) case. ESMDA was then employed to invert the property distribution within the 

fluvial channels of all other ensemble members, using the “observed” temperature and pressure data along the injection and production 

well from the “truth” case. We also consider the presence of a monitoring borehole to analyze how additional monitoring data impacts the 

convergence of ESMDA. The simulation results of the posterior models demonstrated a significant reduction in root mean square error 

for temperature and pressure data which align more closely with the “observations” compared to the prior models. This outcome confirms 

the feasibility of applying ESMDA for data assimilation in fluvial geothermal systems, such as the Delft campus geothermal project. 

1. INTRODUCTION  

Direct-use geothermal heating is one of the key available low-carbon energy solutions (Lund and Toth, 2021). The Delft campus 

geothermal project (Geothermie Delft, https://geothermiedelft.nl/en/) was established with two objectives: First, to serve as a research 

platform for developing new scientific and engineering insights and methods, and, second, to provide thermal energy for the TU Delft 

campus and parts of the city of Delft (Vardon et al., 2024; Vardon et al., 2020). The project consists of a doublet system targeting the 

fluvial Lower Cretaceous Delft sandstone formation at a depth of approximately 2 km beneath the campus (Willems et al., 2020). The 

injection and production doublet wells have been completed and thermal energy production is expected to commence in 2025. The project 

incorporates a comprehensive scientific program, including the installation of fiber optic cables, extensive logging and coring programs, 

and a seismic monitoring network. All available data will be assimilated with reservoir modeling techniques to enhance the understanding 

of the reservoir architecture, streamline data acquisition, constrain production uncertainty, and enable reliable reservoir performance 

forecasts and  optimization for informed decision-making during commercial geothermal operations (Voskov et al., 2024). 

We propose a workflow for an open-source digital twin for geothermal reservoirs that can assimilate available data and can be used for 

quantifying and constraining the uncertainty in production temperature and rates (Song et al., 2024). This digital twin workflow includes 

the following elements a) Well logs and seismic data which are utilized to design multiple geologically-plausible reservoir models that 

capture possible geological scenarios using the Rapid Reservoir Modelling (RRM) software. RRM is a sketch-based modelling software 

that allows users to rapidly generate a wide range of geologically consistent models and scenarios in 3D (Jacquemyn et al., 2021). b) 

Different property distributions are assigned to the facies modelled in RRM to capture uncertainty in the petrophysical data. c) The Delft 

Advanced Research Terra Simulator (DARTS) is combined with machine learning techniques to create proxy models that enable fast 

simulations (Khait and Voskov, 2018). d) As new production and monitoring data becomes available, data assimilation techniques will 

be applied to update property distributions for each scenario. This iterative process of data assimilation will help users constrain geological 

and production uncertainties, both of which are key to optimizing operational strategies. 

Data assimilation, as a significant component of the digital twin framework, integrates measurements with numerical simulations of flow 

and heat transfer to improve reservoir characterization (Evensen et al., 2022). Common data assimilation techniques include ensemble-

based methods (Emerick and Reynolds, 2013), gradient-based approaches (Tian et al., 2024), and fully non-linear DA methods (Chen et 

al., 2014). Recently, the ensemble-based ensemble smoother with multiple data assimilation (ESMDA) has gained popularity for 

subsurface inversion problems (Chen et al., 2024; Mohsan et al., 2024; Seabra et al., 2024). Its iteration and inflated covariance matrices 
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enable more robust updates of the subsurface models. It is computationally efficient, flexible and capable of integrating multi-source data. 

Saifullin et al. (2024) combined a physics-based geomechanical proxy model with ESMDA to enhance subsurface permeability 

quantification by integrating vertical displacement measurements from fluid production and injection, which supports the informed 

decision-making in geothermal production and CO2 sequestration. Wu et al. (2021) assimilated tracer data to invert 2D. Oudshoorn et al. 

(2024) utilized ESMDA to integrate electromagnetic and production data, updating conductivity distributions to improve reservoir-wide 

temperature forecasts. 

To date, only a limited number of studies have explored the application of ESMDA to complex geothermal reservoirs, particularly for 

projects such as the Delft campus geothermal project. Addressing this gap is a key task for developing the subsurface geothermal digital 

twin. In this contribution, we evaluate the feasibility of ESMDA for complex fluvial geothermal reservoirs in a synthetic yet geologically 

plausible and hence challenging proof-of-concept. The reservoir model is constructed using scenario-based RRM and facies-controlled 

sequential Gaussian simulation (Li et al., 2021). Production simulations for the geothermal doublet under different property distributions 

are performed with the open-source simulator DARTS. They are combined with ESMDA to constrain geothermal uncertainty and improve 

the understanding of the porosity and permeability distribution in the subsurface reservoir. 

The paper is organized as follows: the Methodology section presents the geological modeling approach, open-source DARTS, and 

ESMDA. The Results section demonstrates the simulation outcomes and uncertainty analysis of the geothermal doublet, followed by the 

evaluation of the data assimilation for the geothermal reservoir. The conclusions are provided in the final section. 

2. METHODOLOGY 

2.1 Geological Modeling 

RRM is an open-source, sketch-based modeling tool with an intuitive interface that allows users to rapidly create 3D geologically 

consistent reservoir models from 2D sketches (Jacquemyn et al., 2021; Petrovskyy et al., 2023). It employs the concept of surface-based 

reservoir modeling, where geological architectures and heterogeneities are represented by surfaces that define enclosed volumes, or 

geological domains. RRM is specifically designed for applications in data-poor environments and has been successfully deployed to 

design and screen geological scenarios for CO₂ storage (Jackson et al., 2022) and geothermal energy production (Baird et al., 2024). Using 

RRM, templates representing individual layers of a fluvial geothermal reservoir are created based on constraints such as channel belt 

width, net-to-gross (NTG), and channel sinuosity. Using these constraints, a library of channel layer templates is constructed through a 

uniform experimental design. Random selection, extraction, and strict comparison with well log data are applied to identify possible 

reservoir layers. The selected channelized layers are stacked with overlaps to mimic subsurface sedimentary processes (Song et al., 2024). 

Figure 1 depicts the reservoir model for a fluvial geothermal system that is used as the reference (i.e., “truth” case) in this study. Facies 

values of 1 and 2 represent sand and mudstone facies, respectively. The reference scenario features mid-sinuosity channel belts with 

widths ranging from 200 to 500 meters, a thickness of 10 m, and an overall NTG of 50%. 

  

 

Figure 1: An example of a reservoir model for a channelized fluvial reservoir with its facies (1 = sand, 2 = mudstone), porosity, 

and permeability distributions (from left to right). Model dimensions are 3,000 m by 2,000 m by 120 m. 
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Figure 2: Probability density function of porosity in the sand facies of the reservoir model. 

Facies-controlled sequential Gaussian simulation (SGSim) is employed to populate the porosity and permeability in the sand facies (Verly, 

1993). Since the mudstones contribute minimally to advective heat transfer, its porosity is set to a constant value. Porosity and permeability 

from well logs are used as hard data for SGSim in the sand facies. A spherical model is used to fit the variogram function. Its porosity 

probability density function is presented in Figure 2. Permeability is computed using the following correlation (Willems et al., 2020) 

 7 5 5 4 3 3 2 2

10
3 523 10 4 278 10 1 723 10 1 896 10 0 333 3 222log ( ) . . . . . .k                        . (1) 

2.2 Delft Advanced Research Terra Simulator  

Since that the Delft campus geothermal project is a low-enthalpy geothermal system, we consider the standard governing equations for 

mass and energy conservation with thermal equilibrium assumptions between the solid and a single fluid phase. This study employs 

DARTS which employs a fully implicit solution in time and the finite volume method with a two-point flux approximation in space to 

discretize these governing equations. The conservation equations can be written as 

   0v q
t
  


   


, (2) 

  1 0( ) ( )
r

U U h v T h q
t
    


         


, (3) 

where t is the time,  is the porosity of porous media,   is the density of fluid phase, q  is the fluid rate per unit volume, U is the phase 

internal energy, Ur is the internal energy of rock, h is the convection coefficient and T is the temperature. The thermal conductivity of the 

fluid and rock is defined as 

 1( )
f r

      , (4) 

where  , r
  and r

 are the thermal conduction coefficients of the overall system, the fluid phase, and the solid rock, respectively. The 

Darcy velocity v is given by 
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where K is the permeability of the porous media,  is the fluid viscosity, p is the pressure, 
p

 is the specific weight, and D is the depth. 

We use pressure and enthalpy as primary variables and consider them the as state variables (Wang et al., 2020), which are evaluated using 

the Newton–Raphson method when solving for Equations (2) and (3) 
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Here, g represents the residual form of the governing equations, and the subscript k specifies the k-th nonlinear iteration. The Jacobian 

and residuals are computed via Operator-Based Linearization (Khait and Voskov, 2018; Voskov, 2017). 
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2.3 Ensemble Smoother with Multiple Data Assimilation (ESMDA) 

ESMDA is utilized as the inversion methodology to estimate porosity and permeability fields in the channel sand of reservoirs. ESMDA 

extends the iterative ensemble smoother by introducing a set of inflation factors multiplied by the observation error covariance matrix. In 

this way, ESMDA controls the size of the updates at each iteration and reduces the risk of overfitting. ESMDA, as applied here, can be 

summarized by the following steps (Emerick and Reynolds, 2013): 

1.   Generate 100 prior realizations with heterogeneous properties for the specific scenario, setting the ensemble size Ne to 100. 

  1 2
M m ,m , ,m , m

i Ne
 ,  (7) 

where M refers to the porosity and permeability in all grid cells that contain the sand facies m
K

i

i

 
  
 

. 

2.   Define the key parameters in ESMDA. Set the number of iterations Na and the set of inflation factors  α . The factors should satisfy 

the requirement 
1

1
1

Na

l l


 . 

3.   For all realizations, simulate heat and fluid flow from time zero by solving Equations (2) and (3) and obtain predictions at measurement 

locations across all time steps given by 

  d m
l l

i i
G , (8) 

where m
l

i
 represents the porosity and permeability fields for the 𝑖-th member at iteration 𝑙.  xG is the forward model, i.e. the model that 

allows us to solve Equations (2) and (3). 

4.   For each ensemble member, perturb the measurement vector using 
1 2/

D d
d d C z

uc obs l
  , where  and Nd is the 

total number of measurements assimilated. Here, CD represents the measurement error covariance matrix. Update the parameter ensemble 

for the next iteration (l+1) using  
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where CYD refers to the cross-covariance matrix between the model prediction and model parameters and CDD to the covariance matrix of 

predicted data. Repeat steps 3 and 4 until the maximum number of iterations Na is reached.  

After the final iteration, the simulated production data at the wells is compared to the observed production data at the wells via the root 

mean square error (RMSE) to quantify the ensemble error relative to the reference values. A lower RMSE indicates better data assimilation 

performance  

  
2

1

1 N

i i

i

RMSE S M
N 

  , (10) 

where Si is the estimated value and Mi is the true value. 

3. RESULTS AND DISCUSSIONS 

3.1 Production Analysis of a Fluvial Geothermal Doublet System 

Our research is aimed at the Delft Sandstone, which is a channelized, clastic fluvial reservoir (Wang et al., 2021; Willems et al., 2020). 

Using the geological realizations generated with RRM and the fluid and reservoir properties from Wang et al. (2021), we construct a 

reservoir model approximating the geothermal doublet in this proof-of-concept study (Table 1). This model represents the reference 

geothermal system (“truth” case) for which we calculate production (“observed”) data against which the simulation results for the model 

ensemble are compared. The reservoir top is at a constant depth of 2,000 m, with dimensions of 3,000 m × 2,000 m × 120 m. Porosity and 

permeability are constant for the mudstone facies. Their values are 0.01% and 0.001 mD, respectively. The porosity distribution in the 

sand facies is modelled using sequential Gaussian simulation, and permeability is calculated using Equation (1), as discussed above. In 

addition to the reference model, 100 equiprobable realizations are created, each with the same channel geometry as the reference model 

but different permeability and porosity distributions. This model ensemble represents the property uncertainty. The solid rock thermal 

conductivity and heat capacity are 259.2 kJ/m/day/K (3.0 W/m/K) and 2,450 kJ/m3/K for the mudstone, respectively, and 190.8 

kJ/m/day/K (2.2 W/m/K) and 2,300 kJ/m3/K for the sand bodies, respectively. Initial reservoir temperature and pressure conditions are 

set to 353.15 K and 200 bar. The top and bottom boundaries are closed (i.e., no heat and fluid flow occurs across them), while all four 

lateral boundaries remain open to approximate an infinitely large aquifer with constant far-field temperature and pressure conditions. The 

reservoir contains three wells: one injection well, one production well, and one monitoring borehole. Note that a monitoring borehole is 
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scheduled to be drilled for the Delft campus geothermal project in 2028. The injection and production wells are spaced 1,200 m apart, 

with the monitoring borehole positioned midway between them. Each well extends 120 m vertically through the reservoir. Water is injected 

at a stable rate of 10,000 m3/day at 298.15 K, while the production well extracts hot water at the same rate. The geothermal simulation 

was conducted over a 50-year period. The model is discretized into 40 m × 40 m × 1 m cells, resulting in a grid size of 75 × 50 × 120 with 

a total of 450,000 cells. 

Table 1: Key parameters for the geothermal doublet. 

Parameters Values 

Reservoir dimension 3,000 m × 2,000 m × 120 m 

Injection-production spacing 1,200 m 

Well length 120m 

Porosity and kh in mudstone facies 0.0001 and 0.001 mD 

Porosity and kh in sand facies See Figure 2 and Equation (1) 

kv/kh 0.1 

Initial reservoir pressure and temperature  200 bar and 353.15 K 

Solid rock conductivity, kJ/m/day/K 259.2 for the sand bodies, 190.08 for the mudstones 

Solid rock heat capacity, kJ/m3/K 2,450 for the sand bodies, 2,300 for the mudstones 

Injection rate and temperature 10,000 m3/day and 298.15 K 

 

 

Figure 3: Map view of temperature (left) and pressure (right) distributions at a depth of 2,000 m after 25 years of production for 

the reference model. The dots in the left plot indicate the location of the injector and producer, and the monitoring borehole. 

Note that the injector location in the pressure distribution is visible in form of the maximum reservoir pressure. Some of 

the channels can be identified in the pressure distribution as well.  

Figure 3 shows the areal temperature and pressure distributions after 25 years at the reservoir top surface (2,000 m depth). Both 

distributions show the impact of the high-permeability sands and the reduced flow in the mudstone facies. The sand bodies channel the 

cold water and lead to breakthrough. They are also the regions where pressure responses are more pronounced, indicating the presence of 

channelized sand bodies. Both, pressure and temperature distributions, are strongly impacted by diffusion (pressure diffusion and heat 

conduction, respectively) so the impact of the channels is less pronounced compared to two-phase flow processes (e.g., CO2-brine 

displacement) or tracer transport. Still, the reservoir heterogeneity clearly impacts pressure distributions, thermal breakthrough, and flow 

patterns in the reservoir.  

Figure 4 presents the simulated temperature and pressure profiles after 10, 20, and 30 years of production for the central monitoring 

borehole. The red line represents the reference data against which all other simulations are compared. The grey lines correspond to the 

100 realizations from the model ensemble. The primary difference among different realizations arises from the different permeability and 

porosity distributions; hence the differences in the temperature profiles represent the reservoir uncertainty. The temperature profiles that 

are observed at the wells illustrate the dynamic evolution of reservoir during heat extraction. As the cold thermal plume gradually migrates 

away from the injection well, heat convection and conduction exhibit a highly transient behavior. The temperature profiles reflect the 
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layer properties: lower temperatures indicate rapid heat transfer, suggesting higher sand content between the injection and mid-well; 

conversely, higher temperatures indicate slower heat transfer and higher mud content. The profiles show that the upper layers (0 to 50 m) 

and lower layers (100 to 120 m) of the model have greater connectivity of the sand facies compared to the middle layers (50 to 100 m). 

Temperature profiles provide a broader characterization of the reservoir's overall layer properties. In contrast, the pressure profiles offer 

more insights about local facies in the near-wellbore region. Pressure remains relatively stable over time and is primarily influenced by 

permeability. In the sand facies in the vicinity of the monitoring borehole (e.g., depths of 0 to 24 m, 40 to 64 m, and 84 to 120 m), pressure 

increases with depth due to fluid flow from the upper to the lower layers. In contrast, in the mudstone facies (e.g., depths of 24 to 40 m 

and 64 to 84 m), the pressure profile represents the hydrostatic pressure since negligible flow occurs. Although the grey lines exhibit 

similar shapes, there are notable differences in the exact values, highlighting the variability among the porosity and permeability 

distributions. This variability, which represents the uncertainty in the production behavior, is more pronounced in the temperature profiles 

compared to the pressure profiles. For instance, after 20 years, the maximum temperature range reaches 36.92 K while the maximum 

pressure range is approximately 1.03 bar. The average ranges are 23.26 K and 0.74 bars, respectively. Given these uncertainties, data 

assimilation is necessary to reduce the variance and improve model reliability. 

 

Figure 4: Temperature and pressure profiles as a function of depth at the central monitoring borehole after 10, 20, and 30 years 

of production. Thin grey lines show the forecasts from the model ensemble while the red lines show the “observed” 

reference temperature and pressure from the “truth” model. 

3.2 Data Assimilation Analysis 

During the ESMDA process, the observations are the temperature and pressure profiles from the injection well, the monitoring borehole, 

and the production well for the entire production period. The red curves in Figure 4 represent the reference data “observed” for the “truth” 

case at the monitoring borehole after 10, 20, and 30 years.  Errors in this synthetic observation data are set to 2 K for temperature and 1 

bar for pressure. Four iterations are performed with inflation factors [9.33, 7, 4, 2] using ESMDA. Only the properties within the channel 

are updated during data assimilation, since the mudstone facies are assumed to contribute minimally to flow processes and therefore its 

properties are set to be constant. As noted above, the ensemble size is 100, representing 100 reservoir models with heterogeneous porosity 

and permeability distributions. During each iteration, cell-specific porosity and permeability values are updated based on the difference 

between predictions from the previous iteration and perturbed observations (Equations 9).  

Figures 5 and 6 show map views that illustrate the areal average property distributions for the prior and posterior ensemble, and the 

property distribution for the reference model at a depth of 2,010 m. Given the inherent uncertainty in the individual property distributions, 

ensemble averages are used for comparison. The results show that posterior porosity and permeability distributions, particularly around 

well locations, are closer to the reference than the prior distributions. These findings highlight ESMDA's capability to refine property 

distribution features, especially within the channel domain. 
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Figure 5: Map view of the areal average porosity distribution for the prior and posterior ensemble and the distribution for the 

reference model at a depth of 2,010 m. 

 

Figure 6: Map view of the areal average permeability distribution for the prior and posterior ensemble and the distribution for 

the reference model at a depth of 2,010 m. 

 

Figure 7: Comparison of temperature at an observation point (located at a depth of 2,000 m and areal coordinates of 1,000 m and 

80 m) after 25 and 30 years with the reference values for different data assimilation iterations. 

Figure 7 shows a box plot of the temperature values predicted after different data assimilation iterations for a randomly chosen observation 

point (depth of 2,000 m with areal coordinates of 1,000 m and 80 m). Outliers beyond the whiskers are displayed as circles. The orange 

line in each box indicates the median value of the 100 ensemble members while the purple and green dashed lines represent the reference 

(“observed”) temperature values after 25 and 30 years of production. The prior ensemble exhibits larger errors relative to the reference 

data and hence higher uncertainty. As the iterations progress, the error decreases and the ensemble spread narrows. These results highlight 

ESMDA's capability to progressively constrain prediction uncertainty. 
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Figure 8: Prior, posterior and reference well temperature and pressure profiles recorded as a function of depth for the injection 

well, monitoring borehole and production well, after 1, 25, and 50 years of production, respectively (from left to right). The 

thin grey lines mean the prior forecasts, the red line denotes the observed reference data, and the blue lines are posterior 

predictions after data assimilation. 

Figure 8 illustrates the prior predictions, posterior predictions, and reference data for the recorded along the injection and production wells 

and the monitoring borehole at different times. The selected variables include the injection well at year 1, the monitoring borehole at year 

25, and the production well at year 50 – with the times selected to coincide where temperature variation is significant along a given well 

profile. After ESMDA, the posterior ensemble (blue curves) align much better to the “observed” data (red curves) compared to the prior 

ensemble (grey curves). The uncertainty of the posterior predictions is significantly better constrained. Take the temperature and pressure 

profiles at the monitoring borehole after 25 years of production as an example: the average temperature range at any depth is reduced 

from 24.37 K in the prior ensemble to 1.60 K in the posterior ensemble while the average pressure range is reduced from 0.80 to 0.34 

bars. Table 2 provides the RMSE values for the temperature and pressure profiles for the prior and posterior at the different wells. The 

RMSE for temperature at the monitoring borehole decreases from 5.29 K in the prior ensemble to 0.31 K in the posterior ensemble, while 

the RMSE for pressure decreases from 0.18 to 0.09 bars.  

Table 2: Average well temperature and pressure profiles RMSE for the injector and producer wells and monitoring borehole. 

 
Average temperature RMSE (K) Average Pressure RMSE (bar) 

Prior  Posterior Prior  Posterior 

Injection well 2.80 0.65 0.51 0.15 

Monitoring borehole 5.29 0.31 0.18 0.09 

Production well 0.54 0.16 0.30 0.20 
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Figure 9: Comparison of prior and posterior production temperature and pressure differential. 

Figure 9 compares the temporal evolution of the production temperature and pressure differentials between the producer and injector for 

the prior and posterior ensemble and the reference model (“truth” case). In this study, temperature and pressure profiles of three wells at 

different times are assimilated. Although we did not assimilate the production data, the posterior production temperature and pressure 

differential (blue curves) are closer to the “observed” reference data (red curve), exhibiting a lower variance and better constrained 

uncertainty. The production temperature range at the last year of operation decreases from 3.82 K to 1.40 K, and that of the pressure 

differential  decreases from 6.3 to 1.2 bars. These results demonstrate the effectiveness of ESMDA in refining predictions, constraining 

uncertainty, and providing a more accurate estimate of reservoir dynamics. 

4. CONCLUSIONS 

We present a proof-of-concept study where we apply ESMDA to better constrain uncertainties in geothermal production data for a 

geologically complex geothermal reservoirs. Scenario-based RRM and facies-controlled sequential Gaussian simulations were used to 

construct a reference model (“truth” case) along with 100 additional realizations to capture uncertainties in porosity and permeability 

distributions. The open-source DARTS simulator enabled fast, high-fidelity thermal-hydraulic simulations. The realizations were input to 

ESMDA, using the simulated dynamic temperature and pressure profiles from injection, monitoring, and production wells as observations. 

Significantly better constrained uncertainties for permeability and porosity distributions and production forecasts were achieved.  

In fluvial geothermal systems, the entire reservoir architecture, e.g. the channel geometry and property distributions, contributes to 

production uncertainties. In this study we focus only on the property distributions within the channels. It is observed that pressure and 

temperature profiles measured along the well paths at different times can provide valuable insights into reservoir performance and yield 

important data to improve production forecasts using ESMDA. Temperature profiles exhibit dynamic variations that are indicative of the 

fluid flow dynamics while pressure profiles remain relatively steady, reflecting permeability and reservoir connectivity.  

ESMDA is shown to be a feasible method to constrain uncertainties in fluvial geothermal systems when assimilating temperature  and 

pressure profiles recorded along the well trajectories. This indicates that ESMDA is likely applicable to the Delft campus geothermal 

project, with further optimization of DA parameters required in conjunction with more detailed geological models. ESMDA performance 

also depends on factors like ensemble size, iterations, and reliability of the observation data.  

This research has several limitations. Only one geological scenario is utilized. However, in real-world conditions, multiple geological 

scenarios exist that could represent a subsurface reservoir, especially a channelized fluvial system. It is important to account for multiple 

geological scenarios, not just different property distributions, to capture a more realistic range of geological uncertainty. ESMDA can be 

combined with multiple geological scenarios to gradually narrow the scope of possible scenarios, enhancing the reliability of predictions 

in the future. Ensemble simulation results enable comprehensive uncertainty analysis by utilizing a catalog of scenarios rather than relying 

on a single deterministic model. The accuracy and reliability of the analysis depend on the ensemble size, which in this study consists of 

100 realizations. Further sensitivity studies are necessary to determine the optimal ensemble size that adequately captures uncertainty. 

Additionally, incorporating more data types, such as fiber optics, electromagnetic measurements and transient data, into the data 

assimilation process can enhance the understanding of subsurface characterization. Since such data will become available for the Delft 

campus geothermal project, our approach can provide valuable insights into the value of information of different data types in constraining 

geological and production uncertainties and guide more effective data acquisition campaigns for future geothermal projects. 
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